ar X iv : m at h - ph / 0 50 70 22 v 1 7 J ul 2 00 5 On the sharpness of the zero - entropy

نویسنده

  • Z. Zimborás
چکیده

The zero-entropy-density conjecture states that the entropy density defined as s ≔ lim N→∞ S N /N vanishes for all translation-invariant pure states on the spin chain. Or equivalently, S N , the von Neumann entropy of such a state restricted to N consecutive spins, is sublinear. In this paper it is proved that this conjecture cannot be sharpened, i.e translation-invariant states give rise to arbitrary fast sublinear entropy growth. The proof is constructive, and is based on a class of states derived from quasi-free states on a CAR algebra. Additionally, it is shown that the entropy asymptotics of all pure shift-invariant nontrivial quasi-free states is at least logarithmic.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

ar X iv : m at h - ph / 0 50 70 22 v 2 2 6 Ju l 2 00 5 On the sharpness of the zero - entropy - density

The zero-entropy-density conjecture states that the entropy density defined as s ≔ lim N→∞ S N /N vanishes for all translation-invariant pure states on the spin chain. Or equivalently, S N , the von Neumann entropy of such a state restricted to N consecutive spins, is sublinear. In this paper it is proved that this conjecture cannot be sharpened, i.e translation-invariant states give rise to ar...

متن کامل

ar X iv : m at h - ph / 0 50 70 22 v 3 1 9 D ec 2 00 5 On the sharpness of the zero - entropy - density conjec - ture

The zero-entropy-density conjecture states that the entropy density defined as s ≔ lim N→∞ S N /N vanishes for all translation-invariant pure states on the spin chain. Or equivalently, S N , the von Neumann entropy of such a state restricted to N consecutive spins, is sublinear. In this paper it is proved that this conjecture cannot be sharpened, i.e., translation-invariant states give rise to ...

متن کامل

ar X iv : 0 70 7 . 03 46 v 1 [ m at h - ph ] 3 J ul 2 00 7 THE ONE - DIMENSIONAL SCHRÖDINGER - NEWTON EQUATIONS

We prove an existence and uniqueness result for ground states of one-dimensional Schrödinger-Newton equations.

متن کامل

ar X iv : m at h - ph / 0 30 70 15 v 1 8 J ul 2 00 3 Integrable geodesic flows on Riemannian manifolds : Construction and Obstructions ∗ Alexey

This paper is a review of recent and classical results on integrable geodesic flows on Riemannian manifolds and topological obstructions to integrability. We also discuss some open problems.

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2005